Core sequences and a cleavage site wobble pair required for HDV antigenomic ribozyme self-cleavage.
نویسندگان
چکیده
The secondary structures proposed for the cis-acting hepatitis delta virus (HDV) ribozymes contain four duplex regions, three sequences joining the duplexes and two hairpin loops. The core and active site of the ribozyme could be formed by portions of the joining sequences, J1/4 and J4/2, together with one of the hairpin loops, L3. To establish the core region and define essential bases within this putative active site 28 single base changes at 15 positions were made and tested for effects on ribozyme cleavage. At 14 of the 15 positions all of the changes resulted in detectable decreased rates of cleavage. At seven of the positions one or more of the changes resulted in a 500-fold or greater decrease in the observed rate constant for cleavage. Mutations that resulted in 10(3)-fold effects were found in all three regions hypothesized to form the core. At the cleavage site substitutions of the cytosine 5' of the site of cleavage did not provide strong support for a sequence-specific interaction involving this nucleotide. In contrast, an A-C combination was the most effective substitution for a potential G-U pair 3' of the cleavage site, suggesting a requirement for a wobble pair at that position.
منابع مشابه
A nested double pseudoknot is required for self-cleavage activity of both the genomic and antigenomic hepatitis delta virus ribozymes.
The crystal structure of a genomic hepatitis delta virus (HDV) ribozyme 3' cleavage product predicts the existence of a 2 bp duplex, P1.1, that had not been previously identified in the HDV ribozymes. P1.1 consists of two canonical C-G base pairs stacked beneath the G.U wobble pair at the cleavage site and would appear to pull together critical structural elements of the ribozyme. P1.1 is the s...
متن کاملTerbium-mediated footprinting probes a catalytic conformational switch in the antigenomic hepatitis delta virus ribozyme.
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, an...
متن کاملThe poly(A) site sequence in HDV RNA alters both extent and rate of self-cleavage of the antigenomic ribozyme
The ribozyme self-cleavage site in the antigenomic sequence of hepatitis delta virus (HDV) RNA is 33-nt downstream of the poly(A) site for the delta antigen mRNA. An HDV antigenomic ribozyme precursor RNA that included the upstream poly(A) processing site was used to test the hypothesis that nonribozyme sequence near the poly(A) site could affect ribozyme activity. Relative to ribozyme precurso...
متن کاملThe genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis
The genome of the human hepatitis delta virus (HDV) harbors a self-cleaving catalytic RNA motif, the genomic HDV ribozyme, whose crystal structure shows the dangling nucleotides 5' of the cleavage site projecting away from the catalytic core. This 5'-sequence contains a clinically conserved U-1 that we find to be essential for fast cleavage, as the order of activity follows U-1 > C-1 > A-1 > G-...
متن کاملCharacterization of the Trans Watson-Crick GU Base Pair Located in the Catalytic Core of the Antigenomic HDV Ribozyme
The HDV ribozyme's folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U(23) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 24 7 شماره
صفحات -
تاریخ انتشار 1996